
Introduction

Among various open-channel systems, a special position
is occupied by looped networks, i.e. networks with cyclic
sequences of reaches. Looped structure often happens at irri-
gation systems; in the case of rivers this this results from nat-
ural bifurcations, in particular at deltaic mouths, like the Red
River in Vietnam, the Ganges and the Mekong [1] as from
hydrotechnical works (bypasses). Rivers of braided and
anastomosing types [2] can be perceived as looped networks
as well. The Lower Oder River is an example of such a sys-
tem in Poland [3].

Looped networks are worthy of special regard among
others due to the fact that any local change of flow condi-
tions, e.g. the narrowing or deepening of a river bed in one
place, may affect the flow values at the major part of the
network. Hence, these networks require computational
methods that allow us to determine flows and water levels
with high accuracy.

The present paper aims to show circumstances of signif-
icant errors at flow determination in looped networks using
standard numerical methods. Simultaneously, some possi-

bilities of computational accuracy improvement by relevant
numerical integration are shown.

Gradually Varied Flow in Open Channels –

Analytical Solutions

The energy equation is the base for all methods of
steady, gradually varied flow computations in open chan-
nels. Assuming abscissa x directed opposite the flow (Fig.
1), this equation can be presented in a differential form: 

(1)

...where z – water surface elevation [m], α – Coriolis coef-
ficient [-], v – mean velocity in a cross-section [m·s-1], g –
gravity [m·s-2], S – energy line slope (hydraulic slope) [-], or
in an integral one:

(2)

...where z1, z2 are elevations and v1, v2 are mean velocities in
cross-sections positioned at x1 and x2, respectively.
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Considering the rectangular bed cross-section, Eq. (1) can
be written as follows:

(3)

...where h is depth [m], hc – critical depth [m], S0 – bed
slope [-].

Solution of Eq. (3) requires specification for the energy
loss function. Assuming the concept of the infinitely wide
channel with a constant bed slope as a base for further con-
siderations, at constant value of Chézy coefficient Eq. (3) is
given by:

(4)

...where hn is the normal depth [m], while Manning’s
approach leads to the equation:

(5)

The analytical solution of Eq. (4) is known as the Bresse
formula [4], which is for the given initial condition (x0, h0)
and at the following denotations:

(6)

...where Fr is a Froude number for uniform flow and may
be written as follows:

(7)

...where:

(8)

Analytical solution for equation (5) was given by
Venutelli [5].

Gradually Varied Flow in Open Channels –

Comparison of Numerical and Analytical

Solutions

The integral form (2) of a gradually varied flow equa-
tion is basically applied in natural channels, while energy
losses being an integral of the hydraulic slope function are
calculated using the trapezoidal rule method [6]:

(9)

This method is widely accepted as a sufficiently accu-
rate one [4, 7], so the applications of other methods of
numerical integration, like Runge-Kutta [4, 8] or Kutta-
Merson [4], are rare. 

Some researchers [1, 9], while discussing methods of
flow calculations in looped networks, assume arbitrarily the
acceptable error of water elevations in a single integration
step as 0.001 m, which creates an impression of accuracy
sufficient for practical purposes. Adlul Islam et al. [10],
comparing the effectiveness of various algorithms for river
network calculations, assume (also arbitrarily) the accept-
able error ten times smaller, i.e. 0.0001 m. However, con-
sidering the looped network as the trapezoidal method as
the mentioned error, values may appear insufficiently accu-
rate, as in the example discussed below.

Example: Let us consider a river network (Fig. 2) con-
sisting of two main channels, 2-1 and 3-1, with constant bed
slope joined in node No. 1 and connected additionally by
transverse channel 2-3. The following assumptions are
made:
- cross-sections for each channel are rectangular with

infinite width,
- the Chézy coefficient for each channel is a constant

independent of the depth and calculated as for uniform
flow due to the Manning formula for the given rough-
ness coefficient n.
These assumptions make the Bresse formula (7, 8) the

exact solution for the problem of water surface level deter-
mination for each reach of the network. Although Manning
formula is basically redundant here due to the invariability
of the Chézy coefficient, it was used to demonstrate the
proximity of assumptions to a possible real situation.

Using independently the Bresse formula and the inte-
gral form of Eq. (2) at different integration steps Δx by
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Fig. 1. Gradually varied open-channel flow.
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Fig. 2. Example of cyclic looped river network.



trapezoidal rule (9), unit flow at reach 2-3 should be calcu-
lated. The following values have been assumed for reaches
2-1 and 3-1:
- unit flows q [m2s-1],
- Manning roughness coefficient n [m-1/3s].

Additionally the following values are given:
- depth in the node No. 1 common for both main reaches

h0 [m],
- constant Coriolis coefficient α=1.1.

The sequence of calculations is presented below:
1. Determination of critical depth, normal depth, and

Chézy coefficients for reaches 2-1 and 3-1 due to the
relations:

(10)

2. Calculation of depths in nodes 2 and 3 using adopted
methods.

3. Determination of unit flow at reach 2-3 using the
Chézy-Manning formula.
All assumptions and results of computations performed

due to the presented algorithm are shown in Table 1.
Analysis of the calculation results shows that differ-

ences between exact water level elevations and the eleva-
tions obtained by integration of energy losses using trape-
zoidal rule method are seemingly small and negligible 
(a few millimeters); however, these differences are the
source of high changes of calculated unit flow values at
reach 2-3. This may produce biased results of mathematical
modeling of flows in a complicated river network with
looped structure and give even entirely false flow condi-
tions in such a network as a consequence. Additionally, the
elevation differences are not a monotone function of the
integration step length Δx. 

Therefore, the problem of accuracy for water level
determination is essential when gradually varied flow has
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Table 1. Determination of flows in an example of a cyclic looped river network.

Assumptions

Value
Reach

2-1 3-1

Lengths [m] 2,000 2,000

Bed slopes [-] 0.001 0.001

Unit flows [m2s-1] 3.00 5.00

Roughness coefficients [m-1/3s] 0.032 0.020

Depth in node No. 1 [m] 3.000

Reach 2-3

Length [m] 200

Bed slope [-] 0

Roughness coefficient [m-1/3s] 0.026

Calculation results

Values common for both methods
Reach

2-1 3-1

Normal depths [m] 1.95 2.00

Critical depths [m] 1.00 1.41

Chézy coefficients [m1/2s-1] 34.92 56.10

Values for particular methods Bresse (exact) Δx=500 m Δx=1,000 m Δx=2,000 m

Depths in node No. 2 [m] 2.05405 2.05277 2.04994 2.05754

Errors of depth in node No. 2 in relation to
exact value [mm]

0 -1.28 -4.11 +3.49

Depths in node No. 3 [m] 2.05337 2.05028 2.04189 2.04430

Errors of depth in node No. 3 in relation to
exact value [mm]

0 -3.09 -11.48 -9.07

Unit flow at reach 2-3 [m2s-1] 0.235 0.450 0.805 1.036



been considered by an integral form of the energy equation
(2). In particular, the proper choice of the integration steps
minimizing the errors of channel depths and elevations
determination becomes important. Earlier, this problem
was reported by Tavener [11]. Next, Družeta et al. [12],
while analyzing the influence of finite element size on the
accuracy of the solution for the 2-D open-flow problem,
showed the existence of an optimal element size that, when
decreased, may produce the worse quality of the model.

One of the possible analysis options is the application of
the modified trapezoidal rule due to the formula:

(11)

...where λ is the weight coefficient, and determination of
the λ value that results in the numerical integral of the ener-
gy head losses equal to the relevant analytical value. 

For rectangular channel Eq. (2) yields:

(12)

...where Δx = x2 – x1. Assuming conditions adequate to the
Bresse solution the hydraulic slope can be expressed as:

(13)

Therefore, using denotations (6), relations (10), and for-
mula (11), Eq. (12) can be written as:

(14)

Rewriting Eq. (7) in a form:

(15)

...the set of equations is obtained that allows us to determine
relevant λ value for any integration step as a function:

(16)

...where:

(17)

For practical reasons it is more convenient to show the
relation (16) in a logarithmic scale, i.e.:

(18)

...where:

(19)

Calculations of the λ values were performed for the fol-
lowing ranges: β∈〈0,1〉, γ∈〈0;1.5〉, and y*∈〈−1;2〉. This
variability covers practically the whole range of flow para-
meters at backwater computations. The graphs for some β
values are shown in Fig. 3. It results that for the given val-
ues of β and γ there exists only one value y*=y0

*, where
λ=0.5 and numerical integration by trapezoidal rule gives
an unbiased result. Analogically, at given values β and y*

there exists the single (at the outmost) value γ=γ0 fulfilling
this condition. This means that while performing one inte-
gration step for the gradual flow equation (4) by trapezoidal
rule, the depth is equal to the exact analytical value at one,
if any, length of the spatial integration step Δx=Δx0. The
graphs show that at sufficiently small values y* (one may
estimate y*<0, so at depths h≥2·hn) the value Δx0>0 does not
exist; therefore, every integration step must be biased.
Worthy of notice is that at y*≅y0

*, plots λ=λ(β,γ,y*) have point
of inflexion and high gradients that cause each inexactness
of y0

* determination affecting λ value relatively strongly.
Substituting λ=0.5 and putting γ=γ0 to Eq. (18) the fol-

lowing inverse function can be found:

(20)

The graphs for relation (20) are shown at Fig. 4, whilst
coefficients of the approximating trinomial function

(21)

are given in Table 2 together with relevant determination
coefficients R2. 
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Table 2. Approximation of the relation y0
*=y0

*(β, γ0).

β a0 a1 a2 R2

0.00 0.6879 -0.4538 0.0646 1.0000

0.10 0.6881 -0.4542 0.0647 1.0000

0.20 0.6892 -0.4562 0.0652 1.0000

0.30 0.6922 -0.4622 0.0670 1.0000

0.40 0.6982 -0.4739 0.0706 1.0000

0.50 0.7087 -0.4953 0.0773 1.0000

0.55 0.7163 -0.5109 0.0823 1.0000

0.60 0.7260 -0.5312 0.0890 1.0000

0.65 0.7383 -0.5577 0.0981 1.0000

0.70 0.7540 -0.5926 0.1104 1.0000

0.75 0.7745 -0.6396 0.1277 1.0000

0.80 0.8017 -0.7050 0.1532 0.9999

0.85 0.8392 -0.8004 0.1928 0.9998

0.90 0.8949 -0.9514 0.2605 0.9993

0.95 0.9899 -1.2301 0.3979 0.9968



Application of linear interpolation to the trinomial
approximation coefficients given in Table 2 for the first step
of the energy equation integration in the main reaches of the
example river network results in the following values:
– for the reach 2-1: β=0.513, y0

*=0.269, γ0=1.062,   
Δx0=2,071 m (exact value – 2,076 m),

– for the reach 3-1: β=0.705, y0
*= 0.301, γ0= 0.919, 

Δx0= 1,838 m (exact value – 1,847 m).

Conclusions

The simulations performed have revealed that numeri-
cal integration of the steady, gradually varied flow in
looped networks of infinitely wide rectangular open chan-
nels may lead to significant errors of water level slopes and
be the source of errors of flow values at particular reaches
of the network. It has been shown that numerical integra-
tion of this equation is exact only for at most one integra-
tion step with its length being a function of the flow para-
meters. Therefore, in order to obtain the unbiased solution,
one may either apply specified inconstant step length or
modify trapezoidal rule by application of variable weight
coefficients according to Eq. (11). 

One can anticipate that similar relations exist for a rec-
tangular channel of finite width; however, weight coeffi-
cients as optimum integration steps require further research
in this case. 
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